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In the first part of this paper, we study the spin-S Kitaev model using spin-wave theory. We discover a
remarkable geometry of the minimum-energy surface in the N-spin space. The classical ground states, called
Cartesian or CN-ground states, whose number grows exponentially with the number of spins N, form a set of
points in the N-spin space. These points are connected by a network of flat valleys in the N-spin space giving
rise to a continuous family of classical ground states. Further, the CN-ground states have a correspondence
with dimer coverings and with self-avoiding walks on a honeycomb lattice. The zero-point energy of our
spin-wave theory picks out a subset from a continuous family of classically degenerate states as the quantum
ground states; the number of these states also grows exponentially with N. In the second part, we present some
exact results. For arbitrary spin S, we show that localized Z2 flux excitations are present by constructing
plaquette operators with eigenvalues �1, which commute with the Hamiltonian. This set of commuting
plaquette operators leads to an exact vanishing of the spin-spin correlation functions beyond nearest-neighbor
separation found earlier for the spin-1/2 model �G. Baskaran et al., Phys. Rev. Lett. 98, 247201 �2007��. We
introduce a generalized Jordan-Wigner transformation for the case of general spin S and find a complete set of
commuting link operators similar to the spin-1/2 model, thereby making the Z2 gauge structure more manifest.
The Jordan-Wigner construction also leads, in a natural fashion, to Majorana fermion operators for half-odd-
integer spin cases and hard-core boson operators for integer spin cases strongly suggesting the presence of
Majorana fermion and boson excitations in the respective low-energy sectors. Finally, we present a modified
Kitaev Hamiltonian, which is exactly solvable for all half-odd-integer spins; it is equivalent to an exponentially
large number of copies of spin-1/2 Kitaev Hamiltonians.
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I. INTRODUCTION

Frustrated quantum spin systems have become a new
paradigm in condensed-matter science. More and more sys-
tems are joining this family. A richness is emerging in terms
of novel ground states and excitations. They not only enrich
the basic science of strongly correlated electron systems, but
also have started playing a key role in an unexpected corner,
namely, quantum computers. Kitaev has suggested that exci-
tations of frustrated quantum spin systems have a special
robustness arising from their nontrivial topological property,
which makes them suitable elements of a topological quan-
tum computer. An exactly solvable two-dimensional frus-
trated spin-1/2 model introduced by Kitaev1,2 exemplifies
this.

The spin-1/2 Kitaev model is interesting in its own right
as a condensed-matter spin model.3–9 In fact a similar model,
called the compass model, although not exactly solvable, was
introduced by Kugel and Khomskii in the late 1970s �Ref.
10� to understand the magnetic properties of transition-metal
oxides, which have orbital degeneracies. Recently an optical
lattice realization of the spin-1/2 Kitaev model has been
discussed.11

The spin-S Kitaev model for S�1 /2 is not exactly solv-
able. It is a challenging question if the Z2 gauge structure and
the presence of low-energy Majorana fermions, discovered
by Kitaev for the spin-1/2 case, survive for arbitrary spin S.
Are there differences between half-odd-integer and integer
spins? In the present paper we approach the problem on two

fronts. First we find exact classical ground states and perform
a spin-wave analysis. The structure of the ground-state mani-
fold in the N-spin space is rich; an exponentially large num-
ber of isolated points are connected by flat valleys. We will
call the ground state corresponding to these isolated points as
Cartesian or CN-ground states as any given spin points along
one of the three Cartesian directions. We also find the phe-
nomenon of order from disorder in our spin-wave analysis.
We discover a nice connection between finding the CN-
ground states and the dimer covering problem on the honey-
comb lattice. In our spin-wave analysis we find an equal
number of finite-frequency and zero-frequency spin-wave
modes, which live on self-avoiding walks �SAWs� that are
uniquely connected to the dimer covering.

On the other front, we get some useful and exact results
for the spin-S Kitaev model, which prove the survival of the
Z2 gauge structure. There are also good indications that the
low-energy Majorana fermion excitations survive for half-
odd-integer spins. Specifically we find plaquette operators
�with eigenvalues �1� which commute with the Hamil-
tonian. This set of commuting plaquette operators leads to a
vanishing of the spin-spin correlation functions beyond
nearest-neighbor separation found earlier for the spin-1/2
model.6 We also discover a Jordan-Wigner transformation for
arbitrary S, which leads to new bond operators �with eigen-
values �1� which commute with the Hamiltonian. This
makes the Z2 gauge structure manifest. The Jordan-Wigner
construction leads, in a natural fashion, to Majorana fermion
operators for the case of half-odd-integer spins and to hard-
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core boson operators for the integer spin case strongly sug-
gesting the presence of Majorana fermions and bosons in the
respective low-energy sectors.

The plan of the paper is as follows. In Sec. II, we consider
a one-dimensional version of the Kitaev model and study
spin-wave theory in the large S limit. We find that although
there is a continuous family of classical ground states param-
eterized by an angle, the zero-point energy of the spin waves
picks out a discrete set of values of the angle as the quantum
ground states; these correspond to dimer coverings on alter-
nate bonds of the model. In Sec. III, we study the two-
dimensional Kitaev model using spin-wave theory. We first
present a general argument to find the classical ground-state
energy. We then identify a discrete and infinite number of
classical ground states; these have an interesting correspon-
dence with SAWs and dimer coverings of the honeycomb
lattice. The spin-wave spectrum is found to contain one-
dimensional finite-frequency spin-wave modes and an equal
number of zero-frequency modes living on the SAWs. The
zero-point energy of the spin waves again picks out a special
class of self-avoiding walks as the quantum ground states.
The number of classical and quantum ground states both
grow exponentially with the number of sites, although the
latter number grows slower than the former. In Sec. IV, we
construct, for any value of the spin S, an infinite set of Z2
operators, which commute with each other and with the
Hamiltonian. We use these operators to show that in any
eigenstate of the Hamiltonian, the spin-spin correlations van-
ish unless the two spins are nearest neighbors; even for near-
est neighbors, only certain components of the correlations
are nonzero. Finally, we use a Jordan-Wigner-type transfor-
mation to construct a set of operators, which act like Majo-
rana fermions �hard-core bosons� for half-odd-integer �inte-
ger� values of S, respectively. The Z2 operators defined
earlier can be written as products of the Majorana fermion
�hard-core boson� operators. In Sec. V, we present a modified
Kitaev Hamiltonian whose energy spectrum can be found for
any value of half-odd-integer spin; this model is equivalent
to an exponentially large number of copies of the spin-1/2
Kitaev Hamiltonian. Some directions for future work are
pointed out in Sec. VI.

II. ONE-DIMENSIONAL KITAEV MODEL

In this section, we will discuss a one-dimensional spin-S
model, which is obtained by considering a single row of the
Kitaev model in two dimensions. We illustrate the order from
disorder phenomenon explicitly. The model is a spin S chain
governed by the Hamiltonian

H1 =
J

S
�

i=−�

�

�Si,1
x Si,2

x + Si,2
y Si+1,1

y � . �1�

We assume that J�0. �If J�0, we can change its sign by
performing a unitary rotation, which flips the signs of Si,1

x ,
Si,1

z , Si,2
y , and Si,2

z for all values of i.� In Eq. �1�, the unit cells
are labeled by i, and each unit cell has two spins labeled as 1
and 2. A factor of 1 /S has been introduced in Eq. �1� so that
the ground-state energy is proportional to S in the limit S
→�.

Let us introduce two vectors in the x-y plane,

n̂ = cos �x̂ + sin �ŷ

and ê = − sin �x̂ + cos �ŷ . �2�

Then a classical ground state of the Hamiltonian in Eq. �1� is
given by the configuration

Si,1
cl = Sn̂ and Si,2

cl = − Sn̂ . �3�

The classical energy of this state is Ecl=−JSN /2, where N is
the number of sites �the number of unit cells is N /2�. Thus
the classical ground states form a continuous family param-
etrized by an angle �, which lies in the range �0,2��. We
will now perform a spin-wave analysis and show that this
picks out four values of � as having the lowest zero-point
energy; these correspond to Cartesian ground states.

The spin-wave spectrum around the ground state given in
Eq. �3� can be found by using the Holstein-Primakoff �HP�
transformation from spins to simple harmonic-oscillator rais-
ing and lowering operators.12–14 To obtain a HP Hamiltonian,
which is quadratic in bosons, we expand the fields as

Si,1 = Sn̂�1 −
pi,1

2 + qi,1
2

2S
� + �S�êqi,1 + ẑpi,1� ,

Si,2 = − Sn̂�1 −
pi,2

2 + qi,2
2

2S
� + �S�− êqi,2 + ẑpi,2� , �4�

where �qi,a , pj,b�= i�ij�ab. The spin-wave Hamiltonian is then
given by

H1,sw = J�
i

�pi,1
2 + qi,1

2 + pi,2
2 + qi,2

2

− cos2 �qi,1qi,2 − sin2 �qi,2qi+1,1�

= J�
k=0

�

�p−k,1 p−k,2 ��1 0

0 1
��pk,1

pk,2
�

+ �q−k,1 q−k,2 �� 1 f�k�
f��k� 1

��qk,1

qk,2
� ,

where f�k� 	 − cos2 � − sin2 �eik, �5�

and k goes in steps of 4� /N. The spin-wave energies are

�k+ = J�1 + 
f�k�


and �k− = J�1 − 
f�k�
 , �6�

where 
f�k�
=�1−sin2�2��sin2�k /2�. The zero-point energy
is

E1,sw = J�
k=0

�

��1 + 
f�k�
 + �1 − 
f�k�
� . �7�

We see that for each value of k, the spin-wave energies have
the same values for � and � /2−�. Now,
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�

� 
f 

��1 + 
f 
 + �1 − 
f 
� =

1

2� 1
�1 + 
f 


−
1

�1 − 
f 

� � 0.

�8�

Thus the total spin-wave energy �k++�k− increases monotoni-
cally as 
f 
 decreases, i.e., as � increases from 0 to � /4 or
decreases from � /2 to � /4. Thus the zero-point energy is
minimum at �=0,� /2,�, and 3� /2, thereby picking out four
points from the continuous family of classical ground states.
These four points correspond to all the spins pointing along
the �x̂ or �ŷ directions.

Interestingly, the ground states chosen by the order from
disorder phenomenon have two degenerate and nondispers-
ing spin-wave branches with frequencies, �k+=�k−=J. It is
easy to show that all these modes are localized on nearest-
neighbor bonds that have zero interaction energy.

Finally, let us briefly discuss the case in which the cou-
plings are not equal on all the bonds. Suppose that the xx
couplings have a strength Jx and the yy couplings have a
strength Jy. If Jx�Jy, we find that the classical ground states
are given by states in which the spins 1 and 2 in each unit-
cell point in the +x̂ , − x̂ or −x̂ , + x̂ directions. The classical
ground-state degeneracy is therefore 2N/2. We find that this
degeneracy is not broken by the zero-point energy of the spin
waves.

III. TWO-DIMENSIONAL KITAEV MODEL

We will now consider the spin-S Kitaev model in two
dimensions. This is a model on a honeycomb lattice with the
Hamiltonian

H2 =
J

S
�

j+l=even
�Sj,l

x Sj+1,l
x + Sj−1,l

y Sj,l
y + Sj,l

z Sj,l+1
z � , �9�

where j and l denote the column and row indices of the
honeycomb lattice, respectively. We again assume, without
loss of generality, that J�0. Note that each spin is coupled
to three other spins through xx, yy, and zz couplings; we will
denote the corresponding bonds as x, y, and z bonds, respec-
tively. �We present a schematic picture of the model in Fig.
1.� We will first assume that the couplings on the three kinds
of bonds are equal. Note that the honeycomb lattice is bipar-
tite with sites belonging to the two sublattices A and B hav-
ing j+ l as even and odd, respectively. If the total number of

sites N is even, each sublattice has N /2 sites.
We first present a general argument to obtain the classical

ground-state energy of the Hamiltonian in Eq. �9�. We con-
sider the spins at different sites Sn to be classical �commut-
ing� vectors and introduce a Lagrange multiplier 	n at each
site to enforce the relation Sn

2 =S2; we do this by adding a
term

H	 = −
J

2S
�
n

	n�Sn
2 − S2� �10�

to Eq. �9�. Extremizing the sum of Eqs. �9� and �10� leads to
the equations

Sn+m
a = 	nSn

a ,

Sn
a = 	n+mSn+m

a , �11�

for any two neighboring sites n and n+m, which are coupled
by an a bond �a=x ,y ,z�. Substituting Eq. �11� in Eq. �9� and
using the relation Sn

2 =S2, we find that the energy of such a
state can be written in two ways, which must be equal to
each other, namely,

Ecl = JS �
n�A

	n = JS �
n�B

	n. �12�

Now, in any classical ground state, we can assume that for
each site n, the spin on at least one of its three neighbors
must point in such a direction that Sn

aSn+m
a �0. For such a

pair, Eq. �11� implies that 	n	n+m=1; note that n and n+m
necessarily belong to different sublattices. Extending this ar-
gument to all pairs of neighboring sites, we conclude that 	n
for all sites n belonging to sublattice A must have the same
value denoted as 	A, while 	n for all sites n belonging to
sublattice B must have the same value denoted as 	B, where
	A	B=1. Equation �12� then implies that Ecl= �JSN /2�	A
= �JSN /2�	B. The condition 	A	B=1 then implies that the
minimum energy will be attained if 	A=	B=−1. Thus the
classical ground state is equal to −JSN /2 corresponding to
	n=−1 at all sites.

We will now explicitly find a large set of classical ground
states. To this end, we observe the following interesting one
to many correspondence of dimer coverings on a honeycomb
lattice with a set of classical ground states of the Kitaev
model that have identical energy. Consider a covering of the
honeycomb lattice with dimers such that every site lies on a
dimer. Associate a classical spin configuration to each dimer
�bond� as follows. Depending on whether it is an x, y, or z
bond, we put the two spins at the ends of the dimer as anti-
parallel and along the x̂, ŷ, or ẑ direction, respectively, in
spin space. This is the reason we call them Cartesian or
CN-ground states. All these classical states have an identical
energy −JSN /2. This follows from the fact that the interac-
tion energy of the two spins of any dimer is −JS. Two neigh-
boring spins not belonging to a dimer have zero interaction
energy either because they are orthogonal or the correspond-
ing spin components do not appear in the bond-interaction
term.

The number of dimer coverings on a honeycomb lattice
has an asymptotic form �1.381�N/2.15 Further, the spins of

x y
z

1
2

3

4

5
6

Wp

FIG. 1. Schematic picture of the Kitaev model on a honeycomb
lattice indicating the three kinds of bonds, x, y, and z. A hexagon
with sites marked 1–6 is shown; the corresponding plaquette opera-
tor Wp is defined in Eqs. �16� and �18�.
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each dimer can be in two possible antiparallel states; hence
we have 2N/2 classical spin configurations for each dimer
covering. This makes the total degeneracy of the CN-ground
states to be �1.662�N.

An important question is whether these classical states
remain stable under quantum fluctuations. We answer this
question in two steps. First we show that the discrete and
exponentially large set of degenerate states found above are
further connected by flat valleys in the N-spin space. Then
we perform a spin-wave analysis and show that to the lead-
ing order in 1 /S there are no negative-energy spin-wave ex-
citations. This ensures local stability of our quantum ground
states.

The discrete set of degenerate states obtained from the
dimer coverings forms a set of isolated points in the N-spin
space, i.e., �S2�N, where S2 denotes the surface of a sphere in
three dimensions. We will now show that there are flat val-
leys defined by a set of continuous parameter, which connect
the discrete points. To see this consider a set of SAWs that
completely covers the lattice such that each lattice site ap-
pears on one and only one SAW. In each SAW, let alternate
bonds form dimers. Each SAW must be either infinitely long
or must be a closed loop consisting of an even number of
bonds �this is because each bond on the honeycomb lattice
goes from a site on sublattice A to a site on sublattice B�.

Let us now consider the sites and bonds lying on one
particular SAW. To be specific, let us suppose that some-
where in the middle of the SAW, we have some sites and
bonds of the form . . .1−x−2−z−3−y−4−x−5. . . . A dis-
crete classical ground state is then given by one in which
the spins at the sites 1 ,2 ,3 ,4 ,5 point along ẑ , − ẑ , ẑ ,
−x̂ , x̂; this has an energy of −2JS for the four bonds
xzyx. Another discrete classical ground state is given by tak-
ing the same five spins to point along x̂ , − x̂ , ŷ , − ŷ , ŷ.
We now note that a continuous family of classical ground
states, which interpolates between the above two discrete
states, is given by a configuration in which the five spins
point along sin �x̂+cos �ẑ , −sin �x̂−cos �ẑ , sin �ŷ
+cos �ẑ , −cos �x̂−sin �ŷ , cos �x̂+sin �ŷ, where � goes
from 0 to � /2; the energy of the four bonds for this configu-
ration is −2JS for all values of �. This transformation can be
extended to all the sites of the SAW.

Thus we have a continuous transformation taking us from
one discrete classical ground state of a SAW to another; we
will call such a transformation a slide. A slide is param-
etrized by an angle �, and it takes us from a discrete classical
ground state in which the even-numbered bond energies are
minimized to one in which the odd-numbered bond energies
are minimized. We now observe that if a slide rotates the
spin on a particular site in the x̂-ŷ plane �such as site 4 in the
previous paragraph�, then that site must be coupled to a site
in the neighboring SAW by a z bond; hence the classical
interaction energy of that site to its neighboring site on the
other SAW remains zero throughout the slide. This is true for
any two neighboring sites belonging to different SAWs no
matter which plane each of them is rotated during the slides
of the two SAWs. Thus, a slide can be carried out on each
SAW separately without changing the classical interaction
energy between the two SAWs; hence there is a continuous
family of classical ground states on each SAW. However,

based on the results in Sec. II, we expect that the zero-point
energy of the spin waves about such a continuous family of
ground states in a SAW will be minimized for a discrete set
of values of �, which corresponds to the spin at each site
pointing along one of the six directions �x̂, �ŷ, or �ẑ. We
will therefore consider below only the discrete set of classi-
cal ground states described in the previous sentence.

We have seen that the discrete classical ground states cor-
respond to dimer coverings of the honeycomb lattice. An
interesting question to ask is whether all dimer coverings can
be continuously connected to each other through the continu-
ous families of classical ground states. We will prove that the
answer is yes by showing that any discrete classical ground
state can be transformed by a succession of slides to a clas-
sical ground state in which all the dimers lie on the z bonds
�we will call these vertical dimers�. For any dimer covering,
the lattice can be covered by SAWs. We now choose these
SAWs as follows. If all the dimers are vertical, there is noth-
ing more to be done. If at least one dimer is nonvertical, we
consider that dimer; each end of it also belongs to a vertical
bond, which is not a dimer �since no point can belong to two
dimers�. We go to the other end of that vertical bond; that
end must belong to a nonvertical dimer. Continuing in this
way, we get a SAW that consists of alternating nonvertical
dimers and vertical bonds, which are not dimers. We now
apply a slide to this SAW; we then get a SAW, all of whose
dimers are vertical. �Figure 2 shows an example of two
SAWs, which are connected by a slide.� We then repeat the
process of taking another nonvertical dimer �which has no
points in common with the previous SAW�, constructing a
new SAW from it using the above procedure, and finally
performing a slide, which converts all the dimers to vertical
ones. By repeating this until we have SAWs covering all the
sites, we reach the state in which all the dimers are vertical.
Thus all dimer coverings of the honeycomb lattice are con-
nected through continuous families of classical ground states
to the purely vertical dimer covering. Therefore all dimer
coverings are also connected to each other through continu-
ous families.

We will now use the HP transformation to compute the
spin-wave spectrum about any one of the discrete classical
ground states given by a dimer covering. Consider a vertical
dimer on which the two spins point along the �ẑ direction.
Let us consider these two spins separately.

(a) (b)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

FIG. 2. Pictures of two self-avoiding walks, marked as 1, which
are related to each other by a slide. The walk in �a� has only non-
vertical dimers, while the walk in �b� has only vertical dimers. The
dimers are shown by solid lines.
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�i� For the spin pointing along the ẑ direction, we
have Sz=S− �p2+q2� /2, but �Sx ,Sy� can be chosen in four
different ways, namely, �S�q , p�, �S�−q ,−p�, �S�p ,−q�, and
�S�−p ,q�, up to the lowest order in the HP transformation.

�ii� For the spin pointing along the −ẑ direction, we have
Sz=−S+ �p2+q2� /2, but �Sx ,Sy� can be chosen in four ways,
namely, �S�p ,q� , �S�−p ,−q� , �S�q ,−p�, and �S�−q , p�.

The term coupling the two spins at the opposite ends of
the vertical dimer is given by Si

zSj
z= �S− �pi

2+qi
2� /2��−S

+ �pj
2+qj

2� /2�
−S2+ �S /2��pi
2+qi

2+ pj
2+qj

2� up to order S.
Thus there is no coupling between the two spins to this order
in S.

For any dimer covering of the honeycomb lattice, there is
a set of SAWs covering the lattice such that none of the
bonds appearing on a SAW is a dimer. Hence the two spins
appearing at the two ends of any dimer belong to different
SAWs as shown in Fig. 3. �Notice that these SAWs are dif-
ferent from the ones we discussed earlier while finding our
flat valley through the slide operation; in those SAWs, alter-
nate bonds were dimers.� As we saw above, sites belonging
to different SAWs are decoupled from each other up to order
S. We can therefore carry out a spin-wave analysis for each
SAW separately. Now consider a SAW which forms a closed
loop with n sites where we saw earlier that n must be an even
integer. �The minimum value of n is 6 corresponding to a
hexagon.� Let n=2m. As we go around the loop, we choose
the spin variables along the loops to be q and p, alternately,
so that the couplings between nearest neighbors involve ei-
ther qm ,qn or pm , pn but not qm , pn. Because of the two cases
�i� and �ii� discussed above, the loop may have either peri-
odic boundary condition �PBC� or antiperiodic boundary
condition �ABC�. Ignoring a constant, we find the spin-wave
Hamiltonian for the SAW to be

Hsw =
J

2�
i=1

n

�pi
2 + qi

2� + J�
i=1

m−1

�p2i−1p2i + q2iq2i+1�

+ J�pn−1pn � qnq1� , �13�

with either PBC or ABC for the last bond connecting sites n
and 1; the sign of the qnq1 term is + and − in the two cases,
respectively. The SAW has m unit cells each consisting of
two sites. The normal modes can be characterized by a mo-
mentum k, where k=0,2� /m , . . . , �2�m−2�� /m in the case
of PBC and k=� /m ,3� /m , . . . , �2�m−�� /m in the case of
ABC. We now find the normal-mode frequencies by solving
the classical Hamiltonian equations of motion. For each mo-
mentum k, we find that there are two frequencies given by 0

and 
k=2J
cos�k /2�
. The existence of a zero-energy mode
for each k is a signature of the enormous ground-state degen-
eracy at the classical level; the zero mode also implies that
the spin-wave correction to the expectation value of the spin
at each site diverges.

The spin-wave normal modes are interesting. Even though
they are formally characterized by a wave vector, they are
defined on self-avoiding strings of varying shapes and sizes
on the lattice. Second, by construction, the classical interac-
tion energy of the spins on a SAW is identically zero bond by
bond; it is neither a minimum nor a maximum. We have a
collection of one-dimensional spin waves living on SAWs.
Further these spin waves have a linear dispersion 
�+q
�2J
q
 at low frequencies around k=�.

A linear dispersion is known in the spin-1/2 Heisenberg
antiferromagnetic system in one dimension. However, the
spin waves there are spin-1 excitations. In the Kitaev model
under consideration, this linear dispersion occurs for both
antiferromagnetic and ferromagnetic couplings and is nonde-
generate indicating some kind of spin-zero or real scalar
character of the spin-wave quanta. The frustration in the Ki-
taev model seems to induce an effective antiferromagnetic
behavior along the SAW lines whatever the sign of J is. This
linear spin-wave spectrum should be considered as a precur-
sor to the linear Majorana spectrum that one gets for the
spin-1/2 Kitaev model. It is likely that these scalar spin-wave
quanta undergo quantum number fractionization leading to
Majorana fermions.

We now calculate the zero-point energy per site e0
=�k
k / �2n� as a function of n�6. We find that �i� for m
odd, e0 /J=cosec�� /n� /n for PBC and cot�� /n� /n for ABC,
and �ii� for m even, e0 /J=cot�� /n� /n for PBC and
cosec�� /n� /n for ABC.

In all cases, e0 /J→1 /�
0.318 as n→�. We find that
the minimum value of e0 occurs if n=6 and we have ABC. In
that case, e0 /J=�3 /6
0.289.

Now we show that the above minimum for the zero-point
energy per site can actually be achieved for the entire hon-
eycomb lattice. Consider a dimer covering such that the cor-
responding SAWs cover the lattice with hexagons as shown
in Fig. 4. �There are three such dimer coverings; this will
contribute a factor of three when we compute the ground-
state degeneracy below.� For each such dimer covering, we
take the two spins on all dimers on bonds of type n to point
in the same way, say, the top spin pointing along n̂ and the
bottom spin pointing along −n̂ �here n=x ,y, or z�. Then we
find that each hexagon has ABC and therefore e0=0.289J.

1

1

1

1

1

1

1

FIG. 3. Picture of a set of self-avoiding walks �dotted lines�; one
of the walks is marked as 1. The dimers are shown by solid lines.

1

2

3

FIG. 4. Picture of a ground state in which the self-avoiding
walks �dotted lines� form hexagons; three of these are marked as
1–3. The dimers are shown by solid lines.
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Next, we note that for each of the three dimer coverings,
the SAWs cover the lattice with N /6 hexagons. These hexa-
gons form a triangular lattice containing N /3 triangles. We
then see that the ABC of the Hamiltonian in Eq. �13� contin-
ues to hold if we flip both the spins on all the three dimers,
which pairwise join three hexagons which form a triangle.
So even after the dimer covering is fixed, we still have an
exponentially large number of ground states given by 2N/3

corresponding to the different ways in which pairs of spins
on different dimers can point. Since there are three possible
dimer coverings, the total degeneracy of the quantum ground
states is 3�2N/3, which goes as �1.260�N for large N. This is
a smaller exponential than the number of discrete classical
ground states, which goes as �1.662�N as stated earlier.

To conclude, we have shown that the dimer coverings
which have the minimum zero-point energy per site given by
0.289J are the ones which correspond to SAWs covering the
lattice with hexagons. The number of quantum ground states
picked out by the zero-point energy of the spin waves still
grows exponentially with the number of sites, but it grows
more slowly than the number of classical ground states.

Finally, we can again consider what happens if the cou-
plings on the three kinds of bonds are different, say, Jx, Jy,
and Jz. We again find that if one of these, say Jz, is larger
than the other two, then the classical ground states are given
by the state with purely vertical dimers; in each such dimer,
the two spins can point along the +ẑ , − ẑ or −ẑ , + ẑ direc-
tions. Hence the number of classical ground states is 2N/2. We
find that this degeneracy is not broken by the zero-point
energy of the spin waves.

IV. CONSERVED Z2 FLUXES

In this section we construct commuting operators for the
spin-S Kitaev model and also generalize the Jordan-Wigner
transformation for the spin-S case. In the process we get
exact results and some new insights.

For the spin-1/2 Kitaev model in two dimensions, it is
known that there is a conserved quantum number associated
with each hexagon. When the model is rewritten as a Z2
gauge theory, these conserved quantities correspond to the Z2
fluxes passing through the hexagon. Since the number of
such quantum numbers �or hexagons� is N /2, the Hilbert
space decomposes into 2N/2 independent sectors correspond-
ing to each flux independently taking the values �1. We will
now show that all this continues to hold for arbitrary values
of the spin S, integer, or half-odd integer.

We first note that the three spin operators Sx , Sy , Sz sat-
isfy the identities,

ei�Sa
Sbe−i�Sa

= Sb if a = b ,

=− Sb if a � b , �14�

for a ,b=x ,y ,z. Now consider a hexagon h with sites labeled
as 1 , . . . ,6 with the Hamiltonian

Hh = S1
xS2

x + S2
yS3

y + S3
zS4

z + S4
xS5

x + S5
yS6

y + S6
zS1

z . �15�

If we define an operator

Wp 	 ei��S1
y+S2

z+S3
x+S4

y+S5
z+S6

x� �16�

�see Fig. 1�, then it follows from Eq. �14� that

WpHh�Wp�−1 = Hh. �17�

Thus Wp commutes with the Hamiltonian Hh. It is easy to
check that Wp also commutes with the other terms of the full
Hamiltonian coming from other plaquettes. For S=1 /2, we
observe that

Wp = − 
1
y
2

z
3
x
4

y
5
z
6

x , �18�

where 
a denote the Pauli matrices.
Since e�i2�Sa

= �−1�2S, we have ei�Sa
= �−1�2Se−i�Sa

. It then
follows from Eq. �14� that

ei�Sa
ei�Sb

= �− 1�2Sei�Sb
ei�Sa

if a � b . �19�

It then follows that Wp will commute with Wp� since the two
will share an even number of sites. It also follows that Wp

2

=1. Thus the Wp’s are a set of mutually commuting con-
served operators with eigenvalues equal to �1.

We note that for S=1 /2, these operators are the same as
the conserved flux operators. We will henceforth refer to
these operators as the flux operators for all S. While we do
not have a gauge theoretic formalism of the model for S
�1 /2, we note that we can associate a conserved Z2 quan-
tum number with every closed loop on the lattice as follows.
For every site on the closed loop, we define the normal di-
rection as the direction associated with the bond that does
not belong to the loop. If �i1 , i2 , . . . , iN� are the sites for that
loop and �a1 ,a2 , . . . ,aN� are the corresponding normal direc-
tions, then the conserved quantity is

WL = �
n=1

N

ei�Sin

an
. �20�

It is interesting to note that these closed-string operators are
very similar to those defined by Den Nijs and Rommelse16 in
the context of S=1 chains and generalized to arbitrary values
of S by Oshikawa.17

A. Ground-state fluxes

In the S=1 /2 model, it has been proven that the values of
the flux operators are the same for all the elementary hex-
agonal plaquettes and are equal to +1. Our semiclassical re-
sults indicate that this may be true for all values of S.

Consider the quantum state constructed by taking the di-
rect product of the spin coherent states corresponding to any
of the classical ground-state configurations defined by a
dimer covering of the lattice. We will refer to these states as
the semiclassical ground states. Consider a dimer covering
which defines a set of closed self-avoiding loops such that
the dimers form the normal directions to these loops. The
semiclassical ground state corresponding to such a dimer
covering is a simultaneous eigenstate of the flux operators
corresponding to the closed loops defined by the dimer cov-
ering. The eigenvalues are given by
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�
n=1

N

ei�Sin

an
�� = ei�S�n=1
N pn
�� , �21�

where pn= �1 depending on the polarization of the spin at
the nth site. Since the honeycomb lattice is bipartite, all
closed loops have an even number of sites. The eigenvalues
are thus ei2�lS, where l is an integer. If S is an integer, then
we see that the eigenvalues are always 1. If S is a half-odd
integer, then it is �−1�l. It can be checked that the classical
configurations, which lead to ABC in the spin-wave Hamil-
tonian, correspond to even l.

Thus we see that the spin-wave fluctuations pick out the
states, which are simultaneous eigenstates of the flux opera-
tors corresponding to one third of the elementary plaquettes.
It further picks out the states which have an eigenvalue +1
for these operators. We note that the semiclassical ground
states can never be the simultaneous eigenstate of all the flux
operators. The spin-wave fluctuations seem to pick out the
states, which are the simultaneous eigenstates of the maximal
number of elementary plaquette flux operators with eigen-
value +1. In the S=1 /2 case, the exact ground state is a
simultaneous eigenstate of all the flux operators with eigen-
value +1. Our results indicate that this may be the case for all
S also.

B. Flux basis and spin-spin correlations

One of the intriguing features of the Kitaev model is the
peculiar form of the spin-spin correlation functions.6 Only
the nearest-neighbor correlations are nonzero. Further, only
Si

xSj
x on the x bonds, Si

ySj
y on the y bonds, and Si

zSj
z on the z

bonds have nonzero values. These results are true for not
only the ground state but also for any eigenstate of the
model. In fact, as we will show, this form of the correlation
function characterizes the set of simultaneous eigenstates of
the flux operators.

Consider any simultaneous eigenstate of all the elemen-
tary flux operators denoted by 
�pn��, where pn= �1 is the
eigenvalue of the flux operator of the nth plaquette. The spin
operator Si

a acting on this state produces another simulta-
neous eigenstate of the flux operators with the eigenvalues of
the two plaquettes, which share the bond �i , i+ â� flipped.
This follows from Eqs. �19� and �16�. As two states with
different sets of values of pn are orthogonal, the only nonzero
spin-spin correlations are

�Si
xSi+x̂

x �, �Si
ySi+ŷ

y �, and �Si
zSi+ẑ

z � . �22�

Thus, as stated earlier, the flux operators define a basis of
a peculiar kind of spin liquid. This basis is formally con-
structed in the fermionic formalism of the spin-1/2 model.
We will now show that it is possible to have an analogous
Jordan-Wigner construction to construct this basis in the
spin-S model also. However, unlike the spin-1/2 case our
construction will not exhaust all the states in the Hilbert
space and thus does not lead to an exact solution of the
model.

Consider a Hamilton path running through the lattice. For
simplicity, we consider an infinite lattice and take the path to
go through the x and y bonds only. The construction can be

generalized to any SAWs.18 Define the “disorder operators”
on the nth site to be

�in
= �

m�n

ei��Sim
z +S�, �23�

where the �in
’s commute with each other and �in

2 =1. At each
site in, the Hamilton path is used to classify the three bonds
as incoming, outgoing, and normal. The normal bond for our
path is the z bond. We denote the spin operator in the incom-
ing and outgoing bond directions by Sin

t1 and Sin
t2, respectively.

We now define two operators at each site,

�in
	 ei��Sin

t1+S��in
,

�in
	 ei��Sin

t2+S��in
. �24�

It then follows that

�in
�im

− �− 1�2S�im
�in

= �nm,

�in
�im

− �− 1�2S�im
�in

= �nm,

�in
�im

− �− 1�2S�im
�in

= 0. �25�

Thus the � and � operators are Majorana fermions for half-
odd-integer spins and hard-core bosons for integer spins.

We now consider the commutators of the �in
and �in

with
the Hamiltonian. Consider the terms �in

H�in
and �in

H�in
. All

the terms in the Hamiltonian involving spins at sites im for
m�n are left invariant. This is because either both or none
of the spins have their signs flipped. So we have

�in
H�in

= H − 2Jt2
Sin

t2Sin−1

t2 − 2Jan
Sin

anSin+ân

an ,

�in
H�in

= H − 2Jan
Sin

anSin+ân

an . �26�

It then follows that the operators defined on the normal
bonds,

uij = ei�S�i� j , �27�

form a set of mutually commuting operators, which also
commute with the Hamiltonian. The flux operator on any
elementary plaquette is equal to the product of the uij opera-
tors on the two z bonds of the hexagon just as in the S
=1 /2 case.

Thus, just as in the S=1 /2 case, the flux basis is easy to
construct in terms of the �i operators. However, writing it in
a simple form in terms of the original spins remains a chal-
lenge.

V. EXACTLY SOLVABLE HIGHER SPIN MODEL WITH
FREE MAJORANA FERMIONS

For the case of half-odd-integer spin S, we find that it is
not possible to write the spin-S Kitaev model in Eq. �9� in
terms of local interactions between the Majorana fermions
introduced above. The difficulty arises from not being able to
invert Eq. �24� to obtain the spin operators. However, for any
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finite value of half-odd-integer spin, we can define a modi-
fied Kitaev Hamiltonian for which we can give the exact
spectrum and degeneracies. Our modified Kitaev Hamil-
tonian has the form

H =
J

S
�

j+l=even
�� j,l

x � j+1,l
x + � j−1,l

y � j,l
y + � j,l

z � j,l+1
z � , �28�

where �a	ei�Sa
is the �-rotation operator introduced in Eq.

�14�. Now, the operators �a only connect states, which have
the same magnitude of Sz, in the Sz basis; this is because ei�Sx

and ei�Sy
acting on 
Sz=m� give 
Sz=−m�. Hence the �a’s

reduce to 2�2 blocks in the basis of eigenstates of Sz; the
number of such blocks is equal to S+1 /2 corresponding to
m=1 /2,3 /2, . . . ,S. For example, in the case of S=3 /2, we
find that in the basis of the two states with Sz= �3 /2, �x

=−i
x, �y = i
y, and �z=−i
z, while in the basis of the two
states with Sz= �1 /2, �x=−i
x, �y =−i
y, and �z= i
z.

In view of this, the �2S+1�N dimensional Hilbert space for
N spins decomposes into �S+1 /2�N copies of 2N dimensional
Hilbert spaces. Inside each copy, the Hamiltonian in Eq. �28�
behaves exactly like the Kitaev Hamiltonian in Eq. �9� lead-
ing to the identical spectrum and physical properties. The
degeneracy of �S+1 /2�N of the Hamiltonian �which is not a
gauge degeneracy� is an unusual decomposition of the eigen-
states and may have some special use in quantum computa-
tion.

In the case of integer spins, Eq. �19� shows that the �a

operators commute with each other for all the values of a
=x ,y ,z. Hence, they can be diagonalized simultaneously;
each of the diagonal entries is equal to �1. The integer spin

version of Eq. �28� therefore reduces to a kind of Ising spin
model, which is classical rather than quantum mechanical.

VI. DISCUSSION

In this paper we have presented a large spin analysis of
the Kitaev model whose spin-1/2 end is exactly solvable. We
find a classical ground-state structure, which has a nontrivial
geometry in the N-spin space. There are discrete sets of
points that are connected by flat valleys. Our spin-wave
analysis gives either zero or positive-energy excitations indi-
cating local stability of the degenerate set of vacuua. Further,
depending on the vacuum chosen �which depends on the
dimer covering pattern�, the spin waves are localized on the
SAW curves. It would be interesting to see how and when
quantum number fractionization occurs and Majorana fermi-
ons emerge when one goes beyond harmonic spin-wave
theory.

A class of excitations that we have not studied in this
paper is the one involving dimer coverings containing one or
more defects. By definition, a defect site does not lie on a
dimer. We can consider ground states about these defective
dimer coverings; these will define ground states containing a
topological spin defect. As the energy of one topological
defect is of the order of JS, there is a finite gap to these
excitations. It would be interesting to study whether such a
defect might be related to a Majorana fermion excitation.
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